The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Maximum Principle for Viscosity Solutions of Fully Nonlinear Second Order Partial Differential Equations

We prove that viscosity solutions in W 1'~176 of the second order, fully nonlinear, equation F(D2u, Du, u) = 0 are unique when (i) F is degenerate elliptic and decreasing in u or (ii) Fis uniformly elliptic and nonincreasing in u. We do not assume that F is convex. The method of proof involves constructing nonlinear approximation operators which map viscosity subsolutions and supersolutions ont...

متن کامل

Weak Dynamic Programming Principle for Viscosity Solutions

We prove a weak version of the dynamic programming principle for standard stochastic control problems and mixed control-stopping problems, which avoids the technical difficulties related to the measurable selection argument. In the Markov case, our result is tailor-maid for the derivation of the dynamic programming equation in the sense of viscosity solutions.

متن کامل

The Pontryagin Maximum Principle

Theorem (PontryaginMaximum Principle). Suppose a final time T and controlstate pair (û, x̂) on [τ, T ] give the minimum in the problem above; assume that û is piecewise continuous. Then there exist a vector of Lagrange multipliers (λ0, λ) ∈ R × R with λ0 ≥ 0 and a piecewise smooth function p: [τ, T ] → R n such that the function ĥ(t) def =H(t, x̂(t), p(t), û(t)) is piecewise smooth, and one has ̇̂ ...

متن کامل

First Order Partial Differential Equations

If T⃗ denotes a vector tangent to C at t,x,u then the direction numbers of T⃗ must be a,b, f. But then (1.2) implies that T⃗ n⃗, which is to say, T⃗ lies in the tangent plane to the surface S. But if T⃗ lies in the tangent plane, then C must lie in S. Evidently, solution curves of (1.2) lie in the solution surface S associated with (1.2). Such curves are called characteristic curves for (1.2). W...

متن کامل

First order partial differential equations∗

2 Separation of variables and the complete integral 5 2.1 Separation of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The envelope of a family of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 The complete integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Determining the characteristic strips from t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1986

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1986-0860384-4