The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations
نویسندگان
چکیده
منابع مشابه
The Maximum Principle for Viscosity Solutions of Fully Nonlinear Second Order Partial Differential Equations
We prove that viscosity solutions in W 1'~176 of the second order, fully nonlinear, equation F(D2u, Du, u) = 0 are unique when (i) F is degenerate elliptic and decreasing in u or (ii) Fis uniformly elliptic and nonincreasing in u. We do not assume that F is convex. The method of proof involves constructing nonlinear approximation operators which map viscosity subsolutions and supersolutions ont...
متن کاملWeak Dynamic Programming Principle for Viscosity Solutions
We prove a weak version of the dynamic programming principle for standard stochastic control problems and mixed control-stopping problems, which avoids the technical difficulties related to the measurable selection argument. In the Markov case, our result is tailor-maid for the derivation of the dynamic programming equation in the sense of viscosity solutions.
متن کاملThe Pontryagin Maximum Principle
Theorem (PontryaginMaximum Principle). Suppose a final time T and controlstate pair (û, x̂) on [τ, T ] give the minimum in the problem above; assume that û is piecewise continuous. Then there exist a vector of Lagrange multipliers (λ0, λ) ∈ R × R with λ0 ≥ 0 and a piecewise smooth function p: [τ, T ] → R n such that the function ĥ(t) def =H(t, x̂(t), p(t), û(t)) is piecewise smooth, and one has ̇̂ ...
متن کاملFirst Order Partial Differential Equations
If T⃗ denotes a vector tangent to C at t,x,u then the direction numbers of T⃗ must be a,b, f. But then (1.2) implies that T⃗ n⃗, which is to say, T⃗ lies in the tangent plane to the surface S. But if T⃗ lies in the tangent plane, then C must lie in S. Evidently, solution curves of (1.2) lie in the solution surface S associated with (1.2). Such curves are called characteristic curves for (1.2). W...
متن کاملFirst order partial differential equations∗
2 Separation of variables and the complete integral 5 2.1 Separation of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The envelope of a family of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 The complete integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Determining the characteristic strips from t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1986
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1986-0860384-4